### 川重テクノロジー 分析装置ギャラリー

## 電気分解分析装置

#### 装置概要

一般に銅合金は他の金属材料と異なり、主成分であるCu(銅)の含有量が規定され、(下記表参照)これら主成分の定量分析は、他の分析に増して精度が要求されます。この分析を精度良く行えるのが、電気分解分析装置を使用しての銅電解重量法(JISH1011・H1051)です。他のどの様な定量法よりも高精度です。銅合金はもちろんですが、他にアルミ合金・ホワイトメタル(スズ合金)などのCuの分析が可能です。又、前処理の条件によりますが、Ag(銀)やPb(鉛)などの電解分析も可能です。

JIS規格H3100·H5120抜粋

| 313761113100 1131201K4T |      |             |  |  |  |  |  |
|-------------------------|------|-------------|--|--|--|--|--|
| JIS規格                   | 名称   | Cu規格値       |  |  |  |  |  |
| C1220                   | 無酸素銅 | 99.90以上     |  |  |  |  |  |
| C2600                   | 黄 銅  | 68. 5∼71. 5 |  |  |  |  |  |
| CAC407                  | 青銅鋳物 | 86.0~90.0   |  |  |  |  |  |





#### 原理



銅合金などの金属試料を酸で完全に溶解します。その溶液を、電気分解分析装置にて白金電極を用いて電解し、陰極に直接金属銅を析出 (メッキ)させます。電極の質量を秤り、その電着増量にてCu量を求めます。

#### 黄銅のCu分析例

高力黄銅鋳物の繰り返し分析(n=3)です。

より精度を高めるため、電解操作終了後液の残っているCuを、プラズマ発光分析装置(ICP-AES装置)にて測定し、電着量に合わせます。これらの操作をすることにより、主成分であるCuの信頼できる有効数字4桁の報告が可能です。

| 試料 \ 分析値(n=3)        |     | 電解重量法<br>分析値 | 電解残液<br>分析値 | 分析値<br>合計 | Cu報告値 |       |
|----------------------|-----|--------------|-------------|-----------|-------|-------|
| 高力黄銅鋳物<br>JIS_CAC303 | 1回目 | 61.089       | 0.032       | 61.121    | 61.12 |       |
|                      | 2回目 | 61.115       | 0.007       | 61.122    | 61.12 |       |
|                      | 3回目 | 61.111       | 0.013       | 61.124    | 61.12 |       |
|                      |     |              | _           | _         |       | (質量%) |

# 川重テクノロジー株式会社

分析•環境評価

URL: http://www.kawaju.co.jp

お問い合わせは

明石 078-921-1663

神戸 078-682-5258 東京 03-3435-2485